

OPERATOR MANUAL
FOR
MODEL 7330 SERIES
AC/DC RESISTANCE STANDARDS
FOR USE IN OIL

NOTICE

The contents and information contained in this manual are proprietary to Guildline Instruments Limited. They are to be used only as a guide to the operation and maintenance of the equipment with which this manual was issued, and may not be duplicated or transmitted by any means, either in whole or in part, without the written permission of Guildline Instruments Limited.

OM7330-A1-00
26 January, 2026

TABLE OF CONTENTS

1. INTRODUCTION.....	1-1
2. AC CHARACTERISTICS.....	2-1
3. 7330 SERIES SPECIFICATIONS	3-1

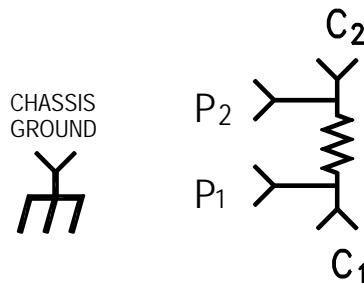
TABLE OF FIGURES

FIGURE 1-1: 7330 RESISTANCE STANDARD	1-1
FIGURE 1-2: 4 WIRE 7330 SCHEMATIC	1-2
FIGURE 2-1: AC/DC ERROR OF A 7334-100Ω AND A 7334-10KΩ¹.....	2-1

1. INTRODUCTION

The Guildline Model 7330 series of AC/DC Resistance Standards, ranging from $1\ \Omega$ to $10\ k\Omega$, are very stable calibration laboratory standards for high accuracy, low uncertainty, resistance calibration in oil (see Figure 1). These standards are designed for use in both AC and DC applications.

They can be used as working standards, or highly reliable and rugged transfer standards. They are extremely useful for use as a reference standard with a resistance or temperature bridge; the calibration of resistance ranges of multi-function calibrators and high accuracy digital multimeters; as well as for use in more classical standards and calibration laboratory applications where the need for high accuracy, low uncertainty, values is required.

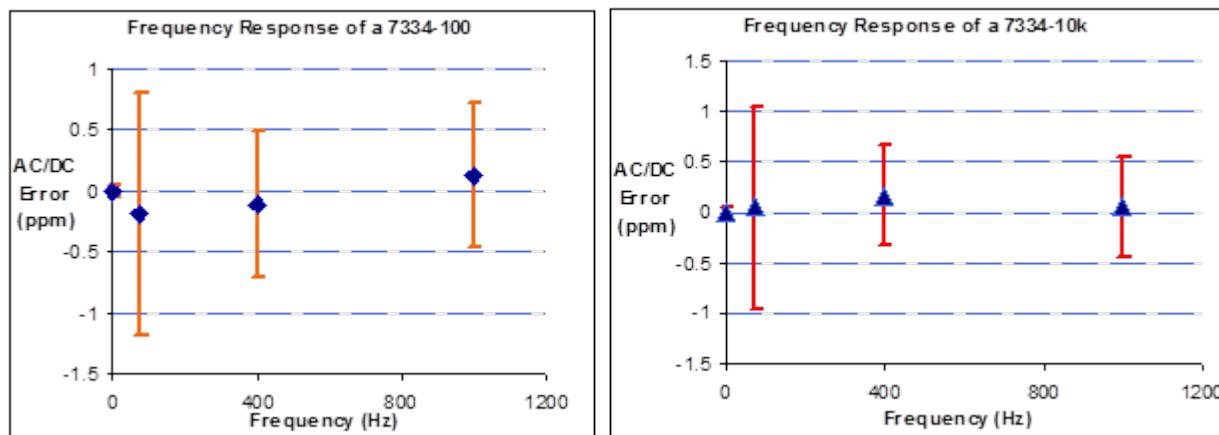


The resistor elements are securely mounted to the inside of a rugged aluminum enclosure with openings designed to maximize the flow of oil through the standard. The resistive elements are specially constructed to minimize the effects of ambient conditions on the stability of the resistor. Further precautions are taken in the resistor construction to minimize the effects of thermal emf's and elimination of leakage at the terminals. Five binding post connections on the top are provided (see Figure 1). The C1 and C2 connections are used to apply the test current or voltage to the resistor. The P1 and P2 connections are used to measure the resistance. The fifth connection is for chassis ground.

Figure 1-1: 7330 Resistance Standard

Note that during the calibration of a 7330, the resistor has been immersed in oil. Traces of this oil may still be evident when the resistor is received. These oil traces do not indicate a problem with the resistor or leakage in the resistor.

Maintenance of the resistor consists only of routinely inspecting the unit for physical damage and cleanliness. They should be cleaned with isopropanol, and a soft brush or cloth. Special care should be taken to ensure the terminal connectionss and insulators are clean.


Figure 1-2: 4 Wire 7330 Schematic

2. AC CHARACTERISTICS

The impedance of the resistor is expressed as:

$$Z(f) = R(f) \cdot (1 + j \cdot 2\pi f \tau)$$

Where $R(f)$ is the real part of the impedance, f is the frequency in Hz and τ is the time constant of the standard. Parameter $R(0)$ is the resistance measured with DC energisation. The 7330 standards have very flat frequency response. The resistive component is virtually independent of frequency, with less than 0.8 $\mu\Omega/\Omega$ (i.e. ppm) of AC/DC difference between DC and 1000 Hz (i.e. 1 kHz). The 7330 series of standards are almost purely resistive with very small time constant. For a 7330-100 Ω , the time constant is typically less than 10 ns. The resistors used in the 7330 Standards are identical to those used in Guildline 7334 Air Based AC/DC Standards. The following charts show the frequency response of the elements used in the 7334 and 7330 Resistance Standards.

Figure 2-1: AC/DC Error of a 7334-100Ω and a 7334-10kΩ¹

Calibrated by National Physical Laboratory (NPL) of UK

Note 1: The 7330 Resistor Elements are identical to the 7334 Resistor Elements

The AC/DC difference is so insignificant that it is almost negligible, when compared to measurement noise. A user can confidently use the Guildline model 7330 for DC resistance calibration, as a reference with an AC temperature bridge, as an AC impedance standard, or elsewhere in AC/DC metrology that calls for a stable, precision standard.

Section 2

3. 7330 SERIES

GENERAL SPECIFICATIONS							
Environmental		Temperature		Humidity			
Operating		18 °C to 28 °C		<70 % RH non-condensing			
Storage		-20 °C to 60 °C		15 % to 80 % RH			
Dimensions		Height		Diameter		Weight	
		mm	Inches	mm	Inches	kg	lbs
		109.2	4.3	95.3	3.75	0.545	1.2

Model (Nominal Ω)	Nominal Value (Ω)	Initial ¹ Tolerance \pm ppm	Stability ² 12 Months \pm ppm	Typical AC/DC Difference @ 1 kHz (\pm ppm)	Maximum Excitation (mA)	Temperature Coefficient ⁴ \pm ppm/°C
7330-1	1	2	2.5	<3.0	320	0.2
7330-2.5	2.5	2	2.5	<3.0	200	0.2
7330-10	10	2	2.5	<1.0	100	0.2
7330-25	25	2	2.5	<1.0	64	0.2
7330-100	100	2	2.5	<1.0	32	0.2
7330-300	300	2	2.5	<1.0	19	0.2
7330-400	400	2	2.5	<1.0	16	0.2
7330-1k	1k	2	2.5	<1.0	10	0.2
7330-10k	10k	2	2	<1.0	3.2	0.2

Special values including 1.9X are available upon request.

Note 1: Nominal initial tolerance is defined as the maximum variation of resistance mean values as initially adjusted at the point of sale.

Note 2: Stability after 2 years is $< 2 \mu\Omega/\Omega$ except for 7330-10K which is $< 1.5 \mu\Omega/\Omega$

Note 3: Calibrated under DC excitation, in air at 21, 23 and 25 °C referred to the unit of resistance as maintained by a NMI, and expressed as a total uncertainty with a coverage factor of $k = 2$. A traceable report of calibration stating the measured values and uncertainty is provided with each resistor.

Note 4: Temperature Coefficient <0.0003 ppm/°C ambient when used with a Guildline 5600 Oil Bath.

Temperature hysteresis < 0.3 ppm between 0 °C and 40 °C. Voltage hysteresis negligible to < 0.1 ppm.

Section 3

4. Calibration and Performance Verification

4.1. Introduction

The following section describes the calibration and performance verification procedures for the 7330 Series of Resistance Standards. It is recommended that Resistance Standards be calibrated between 1 mW and 10 mW of power, as per Table 4.1. Calibration is performed at DC Current Levels.

4.2. Calibration Overview

This calibration procedure covers the entire range of the 7330 Series of Resistance Standards. It is highly recommended that a 7330 Resistance Standard be calibrated within a controlled temperature environment, ideally in oil for ohmic values up to $10\text{ k}\Omega$.

If calibrating in Air, it is recommended that a Temperature Stabilized Air Bath be used. The Standard Calibration Laboratory Temperature of $23\text{ }^{\circ}\text{C}$ is the recommended temperature. Note that there is a temperature coefficient that must be accounted for in the uncertainty contributions if using at a temperature that is different from the last calibration. The Guildline 5032 Temperature Air Bath (shown below) is recommended to provide a stable temperature environment for calibration or use. This Laboratory Grade Air Bath maintains the temperature environment around the resistance standard to $\pm 0.03\text{ }^{\circ}\text{C}$ of set point and also provides a desirable RF and EMI Shielded environment.

Figure 4-1 : 5032 Programmable Temperature Air Bath

If calibrating in Oil, it is recommended that the bath be stable to 3 mK or less. The Guildline 5600 Precision Fluid Bath is the recommended bath. For Oil Baths, it is recommended that the oil temperature be between 23°C and 25°C for calibration. A 5600 Series Precision Fluid Bath is shown below.

Figure 4-2 : 5600 Series Precision Fluid Bath

4.3. Calibration Interval and Performance

It is recommended that the 7330 series be calibrated or verified at the manufacturer's recommended 12 month interval. As with all resistance standards it is highly recommended that past history be used to determine drift rates. Generally, resistance standards will drift in value more significantly in the first 12 months. After the initial 12 months, drift rates typically become smaller for all models.

Each 7330 is manufactured to provide some of the best (i.e. lowest) uncertainties when compared to other commercially available resistance standards. After recalibration the user should determine the Resistance Calibration Uncertainties by applying an uncertainty calculation that includes: uncertainties for drift, standards and equipment used; the calibration and laboratory environment; and other uncertainties applicable to that calibration.

Guildline offers ISO/IEC 17025 Accredited DC Resistance Calibration Services from its Smiths Falls, Canada Location. We can provide some of the lowest uncertainties available. 7330 customers may find that Guildline's Calibration Service is an excellent alternative to maintaining their own calibration facilities to support these standards. US customers can ship to a US address and Guildline makes all of the arrangements for shipping to and from Canada and for import and export.

4.4. Calibration Temperature Point

The 7330 Series of Resistance Standards up to 10 kΩ are normally calibrated in oil at 25 °C. The calibration currents or voltages points for each standard value is listed in Table 4.1.

4.4.1. Equipment and Standards Required for Calibration

The following Resistance Standards and Test Equipment are required for calibration.
Calibration Standards in the ohmic range of 1 Ω to 10 kΩ with currents less than 145 mA.
Values in this range are calibrated in a controlled oil temperature of 25 °C.

Preferred Equipment Requirement for DC Calibration:

Complete 6625A Resistance Measurement System (See Below for Alternative Acceptable Equipment Models)

5600 Series Fluid Bath (for calibration in Oil) OR

5032 Laboratory Grade Temperature Air Bath (for calibration in Air)

Laboratory Grade Primary Resistance Standard (Acceptable Models)

Guildline Instruments 6634A or 6634B Temperature Stabilized Resistance Standard

Guildline Instruments 9330, 9330A or 7330 Oil Standards maintained in a Guildline Guildline 5600 Fluid Bath or Guildline 5032 Air Bath

Guildline Instruments 9334A or 7334 Air Standards maintained in a Guildline 5032 Air Bath

Low Thermal Lead Sets or Low Thermal Wire (Acceptable Models)

Guildline 6622A Precision Lead Set For Resistance Bridge

Guildline SCW 18 or 22 Guage Low Thermal Wire

Or Alternative Measurement Equipment:

(a) Direct Current Comparator Resistance Bridge (Acceptable Models)

Guildline Instruments 6640Q DCC Resistance Bridge

Guildline Instruments 6622A Series DCC Resistance Bridge

Guildline Instruments 6675 or 6675A Series DCC Resistance Bridge

(b) Optional (For Automation and Connections)

Guildline 6664B/C 4-Wire, 8 or 16 Channel Low Thermal Scanner (For Automation)

Guildline Bridgeworks Software

4.5. Routine Calibration

This routine calibration procedure describes the calibration currents and/or voltges required for the 7330 Resistance Standards. The procedure is intended to be used as a reference for qualified metrology personnel who have a primary level standards laboratory with equipment available to support an instrument of this level of standards accuracy.

Qualified personnel means that the technician or metrologist performing the calibration has the necessary level and understanding on Direct Current Comparator (DCC) Resistance Measurements. This includes a full understanding of the DCC Bridge operation's and the precautions necessary to avoid introducing errors such as: guard errors, thermal emfs, temperature and or EMI errors, connector and lead errors, and other sources of measurement errors. The procedure assumes operators will make adequate allowance for equipment stabilization and measurement settling times.

For the best uncertainties with least influence on the measurements, it is recommended that the procedure use automation technologies such as Bridgeworks Software, IEEE Control and a 6664B/C Scanner.

Calibration Notes For All Models

Always check availability of equipment and standards prior to starting the calibration. If the required equipment is not available, do not proceed with the calibration.

Ensure all equipment used is within the calibration validity interval.

Before beginning the calibration, inspect the UUT and all leads for damage and cleanliness. If the UUT is not in suitable condition for calibration, please clean or repair before proceeding.

Most of Table 3.1 recommended calibration points are for 10 mW of Power. While Table 3.1 lists recommended calibration points, actual calibration points should include consideration for the intended and/or application of the resistance standards.

Table 4-1 : List of Recommended Test Currents For Resistance Values (i.e. for 10 mW)

7330 Model	Recommended Current
7330-0.001	3.2 A
7330-0.01	1 A
7330-0.1	316 mA
7330-1	100 mA
7330 -2.5	63.2 mA
7330 -10	31.6 mA
7330 -25	20 mA
7330 -100	10 mA
7330 -400	5 mA
7330 -1k	3.2 mA
7330 -10k	1 mA
7330-12.9064	2.8 mA
7330 -100k	0.32 mA
7330 -1M	0.1 mA
7330 -10M	31.6 μ A

4.5.1. Ohms Calibration (Air)

Use Table 4.2

- Place 7330 into 5032 Temperature Stabilized Air Chamber.
- Setup DCC Resistance Bridge for appropriate measurement (refer to Operator Manual).
- Set chamber temperature to 23 °C and allow to stabilize for a minimum of 12 hours.
- While Stabilizing record last calibration date and values in Table 4.2.
- While Resistor is stabilizing, set Bridge to appropriate settings as referred to in the Operator Manual for the DCC Bridge that is being used.
- After equipment and readings have stabilized, record the resistance and temperature in Table 4.2. If Air Temperature is different from the last calibration, account for any resistance changes due to temperature by applying the Temperature Coefficient of the 7330 Resistance Standard.

Table 4-2: Calibration Data Worksheet (AIR)

7330 Model ►		Serial Number ►	
Calibration Dates ►		LAST CALIBRATION	CURRENT CALIBRATION
Applied Current (Table 2) ►			
Current (I^2R)	Calculated Power ►		
Voltage (E^2/R)			
		LAST CALIBRATION	CURRENT CALIBRATION
Actual Readings	Temp Value 23 °C ►		
Drift Specification From Table 1 ►		_____ $\mu\Omega/\Omega$ / _____	◀ Note Time Frame(1 Year/6 Months Etc)
Calculated ^{1,2}	Drift @ 23 °C ►	$\mu\Omega/\Omega$	

Note 1 – To Calculate Drift Specifications using the following formula:

For Drift @ 23 °C (In $\mu\Omega/\Omega$ or ppm) Calculate Change (PPM) Using formula:

$$((\text{Current Cal Temp Value } 23^\circ\text{C} - \text{Last Cal Temp Value } 23^\circ\text{C}) / \text{Last Cal Temp Value } 23^\circ\text{C}) * 1\text{E}^6$$

Note 2 – For Air Calibration, Ensure any Temperature Coefficient if Different Temperature is used is accounted for.

4.5.2. Ohms Calibration (Oil)

Use Table 3.3

- (a) Ensure Resistor is cleaned and free of debris before step b.
- (b) Place 7330 into 5600 Fluid Bath.
- (c) Setup DCC Resistance Bridge for appropriate measurement (refer Operator Manual).
- (d) Set chamber temperature to ____ °C (Record Oil Temperature used on Sheet) and allow to stabilize a minimum of 12 hours. Recommended Oil Temperature range is 23° to 25°C.
- (e) While Stabilizing record last calibration date and values as listed in Table 4.3.
- (f) While Resistor is stabilizing, set bridge to appropriate settings as referred to in the Operator Manual for the DCC Bridge that is being used.
- (g) After equipment and readings have stabilized, record the resistance and temperature in Table 4.3.
- (g) When all readings are recorded, go to Data Evaluation and Uncertainty Calculation. If Oil Temperature is different from the last calibration, account for any resistance changes due to temperature by applying the Temperature Coefficient of the 7330 Resistance Standard.

Note: Measurement Tips.

Consider the following when setting up the measurement

Verify that the maximum voltage or current applied in the measurement will not exceed the specs for the UUT or the STD. In no case should you exceed 100 mW of applied power.

Verify the reversal rate is appropriate for the measurement and the uncertainty desired.

Ensure that you know whether the measurement you are reading on the Bridge is either a ratio or actual ohms value.

If using a computer, verify that the number of samples and logging delay are appropriate.

If using a computer, set the environmental parameters in BridgeWorks .

Verify guard and ground connections (see Resistance Bridge Operator Manual).

If using a Scanner, ensure that the proper channels for Rx and Rs are selected.

Table 4-3: Calibration Data Worksheet (OIL)

7330 Model ►		Serial Number ►	
Calibration Dates ►		LAST CALIBRATION	CURRENT CALIBRATION
Applied Current (Table 2) ►			
Current (I ² R)	Calculated Power ►		
Voltage (E ² /R)			
		LAST CALIBRATION	CURRENT CALIBRATION
Actual Readings	Temp Value 25 °C ►		
Drift Specification From Table 1 ►		_____ $\mu\Omega/\Omega$ / _____	◀ Note Time Frame(1 Year/6 Months Etc)
Calculated ^{1,2}	Drift @ 25 °C ►	$\mu\Omega/\Omega$	

Note 1 – To Calculate Drift Specifications using the following formula:

For Drift @ Specified Oil Temperature (In $\mu\Omega/^\circ C$) Calculate Change ($\mu\Omega/\Omega$) Using formula:

$$((\text{Current Cal Temp Value (Recorded)} ^\circ C - \text{Last Cal Temp Value (Recorded)} ^\circ C) / \text{Last Cal Temp Value (Recorded)} ^\circ C) * 1E^6$$

Note 2 – For Oil Calibration, Ensure any Temperature Coefficient if Different Temperature is used is accounted for.

5. Maintenance

Maintenance of the resistor consists of routinely inspecting the unit for physical damage and cleanliness. Cleanliness is especially important with respect to oil resistors. **Do not use isopropanol** or cleaners containing isopropyl alcohol. These should be cleaned with :

- **Deionized water with mild detergent:** Use a small amount of mild, non-ionic detergent in deionized water applied to a lint-free cloth or swab. Clean carefully wipe and then rinse thoroughly with deionized water applied to a lint-free cloth to avoid leaving residue.
- **Electronics-grade contact cleaners** (alcohol-free variants): Products offer specialized cleaning solutions for sensitive electronic components and are alcohol-free. Look for non-residue, non-corrosive formulas designed for precision instruments.
- **Water-based cleaning solutions:** Some cleaning solutions made specifically for electronics or laboratory equipment are water-based and alcohol-free.

Special care should be taken to ensure that the terminal connectors are clean and are not cracked or damaged.

Replaceable Parts

The following tables list the replaceable parts. **Note that once a part has been replaced, the unit may be required to be recalibrated.**

To Contact Guildline Instruments, the following information is provided.

USA and Canada Telephone: (613) 283-3000

USA and Canada Fax: 1-613-283-6082

Outside US and Canada Telephone: +[1] 613 283-3000

Outside US and Canada Fax: [1] +613 283-6082

You can also contact Guildline Instruments Limited via their Email or Websites.

Email is: sales@guildline.com

Website is: www.guildlinecom

Common Parts (All Models)

Part Number (GPN#)	Description
813-01102	Case Screws (4 Req'd)
010-01273	Binding Post (Red)
010-01274	Binding Post (Black)
010-05284	Binding Post (Gnd)